Research / Research Highlights

Research Highlights

Research Highlights /

Research Highlights

Prof. Kisuk Kang

Design of a trigonal halide superionic conductor by regulating cation order-disorder

Lithium-metal-halides have emerged as a class of solid electrolytes that can deliver superionic conductivity comparable to that of state-of-the-art sulfide electrolytes, as well as electrochemical stability that is suitable for high-voltage (〉4 volt) operations. We show that the superionic conduction in a trigonal halide, such as Li3YCl6 [where metal (M) is Y or Er], is governed by the in-plane lithium percolation paths and stacking interlayer distance. These two factors are inversely correlated with each other by the partial occupancy of M, serving as both a diffusion inhibitor and pillar for maintaining interlayer distance. These findings suggest that a critical range or ordering of M exists in trigonal halides, and we showcase the achievement of high ionic conductivity by adjusting the simple M ratio (per Cl or Li). We provide general design criteria for superionic trigonal halide electrolytes.

more >> https://doi.org/10.1126/science.adg6591