Research / Research Highlights

Research Highlights

Research Highlights /

Research Highlights

Prof. Jung Pyo Lee, Seung Hee Yang

Antibiotic-induced intestinal microbiota depletion can attenuate the acute kidney injury to chronic kidney disease transition via NADPH oxidase 2 and trimethylamine-N-oxide inhibition

Intestinal microbiota and their metabolites affect systemic inflammation and kidney disease outcomes. Here, we investigated the key metabolites associated with the acute kidney injury (AKI)-to chronic kidney disease (CKD) transition and the effect of antibiotic-induced microbiota depletion (AIMD) on this transition. In 61 patients with AKI, 59 plasma metabolites were assessed to determine the risk of AKI-to-CKD transition. An AKI-to-CKD transition murine model was established four weeks after unilateral ischemia-reperfusion injury (IRI) to determine the effects of AIMD on the gut microbiome, metabolites, and pathological responses related to CKD transition. Human proximal tubular epithelial cells were challenged with CKD transition-related metabolites and inhibitory effects of NADPH oxidase 2 (NOX2) signals were tested. Based on clinical metabolomics, plasma trimethylamine N-oxide (TMAO) was associated with a significant increased risk for AKI-to-CKD transition [adjusted odds ratio 4.389 (95% confidence interval 1.106–17.416)]. In vivo, AIMD inhibited a unilateral IRI-induced increase in TMAO, along with a decreased in apoptosis, inflammation, and fibrosis. The expression of NOX2 and oxidative stress decreased after AIMD. In vitro, TMAO induced fibrosis with NOX2 activation and oxidative stress. NOX2 inhibition successfully attenuated apoptosis, inflammation, and fibrosis with suppression of G2/M arrest. NOX2 inhibition (in vivo) showed improvement in pathological changes with a decrease in oxidative stress without changes in TMAO levels. Thus, TMAO is a key metabolite associated with the AKI-to-CKD transition and NOX2 activation was identified as a key regulator of TMAO-related AKI-to-CKD transition both in vivo and in vitro.

more >> https://doi.org/10.1016/j.kint.2024.01.040